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Physics of isodesmic chemical equilibria in solution
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Exactly solvable one-dimensional lattice-gas model mixtures are used to develop a physics of isodesmic
chemical equilibria. Potential distribution theory is used to solve directly for the equation of state and to obtain
the cluster statistics needed to discuss self-assembly. A mapping of three-dimensional amphiphilic discotic
solutions onto one-dimensional models is proposed and is found to explain the remarkable nature of previous
computer simulation data. Here, at fixed pressure, the low concentration regime involves an extreme concen-
tration dependence to solute aggregation, associated with a maximum in the equilibrium constant. This behav-
ior is a class of colloidal phenomena, driven by solvent-solvent attractive interactions. In addition, the exact
physics of isodesmic chemical equilibria is used to investigate a variety of conceptual issues concerning the
phenomenology of self-assembly. One finds #lagt N, is an exact consequence of statistical mechanics and
that it is even possible to give a precise meaning to the chemical potential of an aggregate, that, for example,
defines what is meant physically by the idenfity= ., . The nonuniqueness of the choice of cluster definition
is considered in the context of solvent-excluded clusters; an explicit example appropriate to amphiphilic
systems. Finally, the mapping to three-dimensional discotic solutions is extended to inhomogeneous phenom-
ena whereby the disks prefer to adsorb flat onto a surface. This mapping implies that the sticky solvent regime
is associated with an overwhelming driving force for chains to attach by one end to a solutelike wall.
[S1063-651X97)03905-9

PACS numbsgs): 82.70-y, 05.20-y, 61.20.Qg, 82.60.Hc

[. INTRODUCTION gate(even liquid argon contains aggregates at any instant in
time), (iii) the chemical meaning of an amphiphi{aow

Complex fluids and, in particular, solutions containingwide can one vary intermolecular interactions and/or mo-
amphiphiles, exhibit the phenomena of self-assembly, as déecular geometry and still obtain specific aggregatesid

fined by an equilibrated aggregate distribution resulting from(iv) what precise statistical mechanical meaning can be at-
the exchange of amphiphiles between an aggregate envirotached tou,, the so-called aggregate chemical poterjiadter

ment and being isolated within a solvent all, the only true chemical potentials are those of the solute
(ma) and solvent fig) molecules, withu,=nu, since the
[1]+[n—1]=[n], @ chemical potential of a molecule cannot distinguish between

temporarily isolated or aggregated environnf2i@ne aim

this paper is to tackle these and related issues exclusively
within the context of statistical mechanics; in short, to de-
velop a physics of self-assembly. In particular, | shall rely
heavily on an exact representation of liquid state physics,
[n] known as potential distribution theory, whereby either in the

where[ n] denotes the concentration of aggregates compose?f
of preciselyn amphiphiles. The phenomenology of chemical
equilibria (see, for example[1-3]), based on the law of
mass action, generates a set of equilibrium constants,

K.,= TEENENL (2 canonical or grand canonical ensemble, the chemical poten-
[n—=1][1] tial of speciesA is given by the sum rulg4]
which in turn define the configurational free energy change Bunt poS0) By
involved when an amphiphile joins an aggregate pa(r)e” PratPra = (g~ FIall) 5
—InKy=Bud— Bul_,— Bu?, (3)  and, hereafter, densitiep) are made dimensionless by tak-
ing all lengths to be divided by a hard-core diaméteith de
,Bm=,8ﬁﬁ+ In[n]. (4) Broglie wavelengths set to unjtyOn the left side of Eq(5)

the quantityv®*! denotes any one-body or external field,
Here, B denotes MgT (T is temperature andg Boltz-  while the right side is the average of a Boltzmann factor
mann’s constaftand the notationu,, indicates the identifi- involving the energy of a test particle of specieplaced at
cation of a chemical potential for aggregates of sizéfhe  positionr, i.e., ¢ is the hypothetical energy of interaction
above language hides a multitude of sins, includiingfor a  between the test particle and the system, with the latter not
two-component system, fixing two thermodynamic fieldsactually physically affected by the ter ghos} particle.
such asT andp (pressurg still leaves one thermodynamic The specific purpose of this work is to address the physics
degree of freedonii.e., when is the concentration depen- involved in modeling linear self-assembly by chain-forming
dence of an equilibrium “constant” significant?(ii) the  discotic amphiphiles. One class of experimental system that
nonuniqueness of cluster definitions used to define an aggr&as received much attention consists of solutions of disk-
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shaped triphenylene based molecules dissolved in water. lion alone (along the chain but not between chainghis,
particular, an NMR technique has been developed to meahen, will be our working definition of a discotic amphiphile
sure the aggregation distributi¢s] and simulation modeling in the physical world.

undertakeri6]. The physics of these systems was first tack-

I_ed by carrying out an _e_xtensive serie_s of computer simula- || TWo COMPONENT LATTICE-GAS EQUATION

tions of a generic simplified model of discotic solutions, both OF STATE

to confirm the presence of lyotropic nematic and columnar

liquid crystal states at high concentration and, relevant to this Consider a two-component lattice-g@ds5) mixture, with
paper, to measure the cluster statistics of isotropic solutiongttractive well depths and their associated Boltzmann factors
[7]. To simulate a cluster distribution requires that onedenoted

achieve equilibrium of the set of chemical equilibria defined

in Eq. (1), for all physically significant values af. Clearly, EA=€pn; €B=€p, €C=€aB; (7)
the model needs to be highly simplified to achieve this goal,
but this should not effect the underlying physics driving lin- 1+ay=ePr; 1+ag=ef; 1+ac=efcc. 8)

ear self-assembly. Note also, that the aggregate ends each

consist of a single discotic molecule, so one does not anticiThe particular example considered in Rf0] is the special

pate the presence of a critical micelle concentration and Eqasea,=ag=a andac=—1, i.e., when the unlike interac-

(2) reduces to isodesmic chemical equilibf@fter desmo, tion is purely repulsive and of range twice that of the solute-

meaning bong solute AA) and solvent-solventgB) repulsion. For a stan-
dard LG mixture, all repulsive interactions act over a single

K,=K; n=23,.... (6) lattice spacing(which hereafter is our unit of lengthand

then eacha; appearing in Eq(8) is non-negative. In one

In pure systems, the density dependence of an equilibriurﬂime”SiO” an exact solutiqn of th.e general model can essen-
constant can only arise from cluster-cluster interactionstially be written down by inspection of the potential distri-
which usually lead to a shift i towards larger clusters. b_utlon_theorem. To grasp how this arises, first note that the
Thus, it was natural for the authors of RET] to anticipate ight side of Eq.(5) splits into two factors

that K would become independent of concentration at low — BuA()

concentration, where it would presumably be a minimum. Pe(r)(e PP, 9)
However, the simulation study found precisely the opposite ! . . . .

physics. Attard 8] was the firstyto sugggst thaté strongpcon-Where the first factor is the probability of inserting the hard

centration dependence in the dilute limit of linear self-COre of a particle of typé into the fluid at position and the

assembly could be understood by analogy with colloidal sysBoltzmann factor average is now to be carried out in the

tems at fixed pressur&f. clay swelling. Attard used an Presence of a hard core fixed mthence, the subscript,
effective medium approximation to one-dimensional modeldVhich for one-dimensional systems | shall write &s(for
to discuss, amongst a variety of issues, why at fixed pressui¥all)- Evaluating each of these factors separately, we have

the isodesmic equilibrium constant should be at least a local

maximum at zero concentration. The use of exactly solvable Pe(r)=1-p, (10)
one-dimensional models to elucidate the physics of linear
aggregation was pioneered for single component systems by (e AAY =[1+apXypwtac(l—Xw)pwl?, (11

Mitchell, Barnes, and Ninharf®]. In Secs. Il and IIl below,

| shall extend this approach to encompass a general twovhere the squared form of the right side of E4l) has
component lattice-gas mixtuf@Q]. Of course, such models arisen because the presence of a hard (el a fixed cav-
can always be solved exactly, for example by transfer matriity) splits a one-dimensional system into two independent
methodg[11], but for present purposes | shall develop a di-ensembles(provided attractive interactions do not reach
rect route to the equation of state and cluster statistics, usingcross the wall Here, the total density of solute and solvent
the absolute minimum of mathematical formalism. This, inin the square adjacent to a hard wall is denopgd with
turn, will enable me to extract a significant amount of exactx,, and 1-x,, the associated mole fractions of solute and
physics, directly relevant to the physical chemistry of linearsolvent, respectively. The left side of the potential distribu-
self-assembly in solutiofSecs. IV-VII). In particular, Sec. tion theorem(5) is, in similar notation,

IV proposes a mapping of three-dimensional systems onto

one-dimensional models, which is capable of a semiquanti- xpe Pra, (12
tative explanation of the simulation data of RET]. This

success appears to be due to the fact that in a thredo evaluate the wall quantities and, hence, solve the model
dimensional solution, a linear aggregate is sheathed by soéxactly, all one needs to do is apply the potential distribution
vent and thus in the absence of aggregate-aggregate interaheorem once more, this time evaluating the chemical poten-
tions is indeed a quasi one-dimensional object. When a chaitial in a square adjacent to a hard wedbviously it is the

is broken, solvent interposes between two solute disks, in aame chemical potential, since switching from an infinite to a
manner directly analogous to inserting a disk of solvent. Fosemi-infinite system does not alter the chemical potentials
this mapping to hold, | require solute-solute, solvent-solvent,

and solute-solvent interactions consistent with the exclusion  x,p,e ##2A=(1—p,)[ 1+ apXupw+ ac(1—Xy) pul-

of solvent molecules between aggregated solute in one direc- (13
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Note that this time there is no squared factor, since interacdensity of isolated solute, members of cluster tyjld, is
tions do not reach across the boundary wall. Dividing Eqtherefore defined by the probability of finding a solute at a
(13) by the first result, Eqs(12), (10), and(11), eliminates  given lattice point Xp) and the probability of finding a sec-
up to give ond solute lying directly tgsay the right of the firstwhich
| shall denoteY)
Xwpw(1=p)[1+aaXypwt+ac(l—Xy)puwl=Xp(1=py).
(14 [1]=xp(1-Y)2. (17)

Of course, the same analysis applies to measuring the solv
chemical potential; this just leads to E@.4), but with a,
replaced withag, and x and x,, replaced by *x and
1-x,, respectively. Adding this latter result to E(L4),
eliminatesx to give the key identity

eﬂbain, the squared factor is exact because in one dimension
a fixed particle splits the system into two independent en-
sembles. The concentration of clusters of sizes obtained
by first asking for the probability of finding, say, the left end
occupying a given lattice sitexp), followed byn—1 addi-
. B o Th . . _l
_ + 2, )24 _ tional solute pa.rt|cles filling sites to the right{™ %), plus a
pw(l p){l [aAXw aB(l XW) ZaCXW(l XW)]pW} solute gap at either er[c(l—Y)z]
=p(1—py). (15

At this point, we have achieved an efficient solution for
the equation of state in either of the standard phase spacd§e LG system is, therefore, an exact representation of
(T,p,X) or (T,ug,X). For example, choosing sets the val- isodesmic chemical equilibria, at all concentrati¢regard-
ues ofa,, ag, andac, so that for a specifieg one has less of cluster-cluster interactions
pw(Xy) from Eq. (15), which when substituted into E¢L4)

[nN]=xpY" " {(1-Y)2 (18

gives x(x,,) and hence, from say Eq13), wa(T,p,x) as [n]=[2]Y"", (19
desired. Clearly, all values of are obtained by varying,,

between 0 and 1. At a set value of the solvent chemical _Y_ Y (20)
potential, one can use the solvent analog of (#8) to obtain [1] xp(1-Y)*

pw(Xy) and then substitute into Eq415) to get p(x,,) and
thus x(x,,) from Eq. (14). In both the above cases, one is This is an exponential cluster distribution, defined by a
only required to solve a quadratic, which in fact always possingle dimensionless quantityY]; all the self-assembly
sess a single physical root€dp,p,}<1). This uniqueness properties, therefore, follow from calculating. For ex-
of the solution space guarantees the complete absence @mple, the distribution number average aggregation num-
phase transitions, as one expects for all short-ranged on&€p is
dimensional models, no matter how amphiphilic. By far the _
simplest phase space to work in, however, Tsp(x) as is N=(1-Y) (21)
invariably desired by physical chemists. This happy circum-
stance arises because one can prove the remarkable sum ri@ceY <1, the numbers of large clusters are exponentially
(see Appendix A damped with respect to isolated solute, which is yet another
demonstration of the fact that there can be no phase transi-
Bp=-—In(1-p,), (16) tion in a one-dimensional short-ranged model. To derive an
o . ] ] explicit expression forY, appropriate to any phase space
which is obviously the _dlrect analog of the_qontlnugm statepyoked to express the equation of stéec. 1), let us again
mentBp=p,,, expressing mechanical equilibrium in a sys- make use of potential distribution theory, this time as a sum
tem bounded by a hard wall. Note that, as elsewhere, | havgyje for the chemical potentials of solute and solvent lying
continued to suppress the unit of length, since it is just onggjacent to a fixed solute particier wall). Directly analo-

lattice spacing. Due to sum rulg6), onceT and p are  gous to the derivation of Eq13), we can write by inspec-
specified, the concentration follows immediately from Egs tjon,

(14) and(15); for all 0<x,,<1. This procedure is just trivial

algebra. For completeness, | derive a general expression for y g~ Araten) = (1— p [ 1+ apXypw+ ac(1—Xy) pwl,
the total energy per particle in Appendix B; again, the natural (22)
phase space isT,p,x,(X)]. For all of the results above and

below, taking the limitx,,=x=1 reduces to the well-known (1- XwA)pre—B(MB+ =(1- pun)[1+ag(1—xy) pw
exact solution of the one-dimensional Ising mofdEl], pro-

vided one translates between Ising and lattice-gas symmetry. +acXwpwl, (23

Ill. CLUSTER DISTRIBUTION AND THE where the notation subscriptA Qenotgs a property adjacent

CONCENTRATION DEPENDENCE OF ISODESMIC to a wall of s:olute._ The only sllght.dlﬁerence W|th.the hard

CHEMICAL EQUILIBRIA waII expressions, is that the left sides now contain external
field contributions €, or ec). By comparison with Eq(13)

Let us take(as the obvious choigethe definition of a and the corresponding expression for the solvent chemical
cluster of clasgn], to be any continuous chain of solute  potential, one immediately eliminates the chemical potentials
particles, whose two ends are separated by at least one lattifrem expressiong22) and (23) and can, thus, readily solve
spacing from all other solute. The concentratigtumber  for p,, andY=x,apwa- The key result is that
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1+ap)x InK=Be
y= — ( +A) wfi (24) Bep
[1+awtwputac(1=Xw)pul 1+ [apC+ (1~ X) >+ 28cX(1—X,) 102
+n 2 y
—ePlunten), (29 (1= put (120 (1 Xu)pu]

where the second form follows from substitution of E3) (28

and sum rulg16). o _ _

We have therefore obtained an exact physics of isodesmig@nd remembering that specifyifigdefinesa, ,ag ,ac, while
chemical equilibria and can, thus, directly test the conceptuatw=1—¢"??, and Egs(14) and (15) definex(x,) for any
integrity of the phenomenological approach pioneered byiven (T,p). At fixed temperature and pressuke typically
physical chemist§1—3]. For example, combining the results Varies with concentration in a roughly quadratic manner. The

(25), (19), and(20) yields the form limiting pure-fluid values are
NBua=n(—Bea+ Bp)+INK+In[n] (26) +aup?
INK (x=0) = Bex+In ﬂ) 29
=nBul+InK+In[n], (27) A (1+acpw)®/’
which is precisely the form that Eq&3) and(4) reduce to in 148,02
the case of strict isodesmic equilibria, provideg=ngu, , as 1\ — anPw
e . ) ) INK(x=1)=Bep+In 5. (30
anticipated on phenomenological grounds. A direct physical (1-pw)

meaning tou, is pursued in Sec. V below. Interestingly,

n2(T.p)=—€x+p is an enthalpy rather than an energy, It is straightforward to see from expanding E@8) about
without entropic contributions, and note also that it is inde-x, >0 andx,<1 that, at fixed temperature and pressure,

pendent of concentration and, thus, is strictly constant afK is a minimum at some intermediate concentration in all
fixed temperature and pressure. In contrat, the so-called cases, such that

configurational free energy required to create two ends by

splitting a chain, is capable of displaying dramatic concen- _

tration dependence. To see the physical origin of this behav- agpw(1=pw)>1+actacpu(ltacpw). (3D
ior, we can substitute Eq24) into Eqg. (20) and use the

results(14), (15) to eliminatexp, thereby obtaining an ex- When the condition31) holds, the value ok,, at the mini-

plicit expression folK(T,p,Xy,) mum inK is given by
|

min_ agpw(1l—py) —(1+ac) —acpw(l+acpw) (32

W puwlaa(l+acpy) +ag(l—py) —ac(l—py+1l+acpy)l
and the corresponding concentration follows from EG4d) and (15):

min_ Xwin[1+aAerUinpw+aC(l_erUin)pw] 33

1+[aa(xy 2+ ap(1—xy" 2+ 2acxy (1= Xy ) 1w
Finally, to see the significance of the drop in the equilibrium constant, one can combi@2Ewith
K(x=0) (1+agp2)[1— py+ (1+ac)(1—x"Mp, 1 a0

KX ~ (14 acpw) AL+ [an0q™) 2+ ag(1— X2+ 2acxi (1 — X0 1p%)

Let us now use the above results to explore those physicathereac=—1 buta, andag are positive(as appropriate to
situations which lead to a strong isobaric concentration deattractive interactions the equilibrium constant is always a
pendence td, associated with a maximum at lowest con- maximum at zero concentration. We can regard all such situ-
centration. This is the somewhat counterintuitive situationations as amphiphilic linear self-assembly, since it is driven
encountered in the simulation study of Rgf] and explained by significantly reduced solvent-solute attractions in com-
by Attard[8] in terms of an analogy with colloidal physics. parison with solvent-solvent attractive energy. At lowest
Firstly, note from condition(31) and sum rulg(16) that K concentration the solute-solute attraction does not contribute
will be a local maximum atx=0 in situations where to the concentration dependence of the equilibrium constant
ag> a(Z: and the pressure is not too high nor too low. If the for solute clustering. Since eaeh depends exponentially on
latter criteria is not present, then self-assembly is either tothe associated attractive well depth it is clear from result
low (pressure too smallor saturated at a high valupres- (34) that if eg was say an order of magnitude greater than
sure too high In the special case considered in Rgf0], both ec ande,, one would find IIK varying by as much as
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ten, as concentration is varied. In these cases, one sees framant disk and, hence, the number of solvent particles making
Egs.(32) and(33) thatx'"" andx™" lie close to 1 and from up a solvent disk. This is temperature dependent at the fixed
Egs. (14) and (15) that x is a highly reduced function of simulation pressure, varying from around 6 Bt=3 to
Xy, SO thatk drops very rapidly at low concentration, on the about 10 aff* = 1.5. If roughly half the solvent molecules of
scale ofx. This, in turn, is associated with an almost constantan effective solvent disk interact with a neighboring disk and
value of x,(x) and, hence, als from Eq. (24) and the each such surface molecule looses about two intermolecular
aggregation numbef21), until lowest concentration where bonds when the disks are separated, then the effective
eventuallyY must drop to zero. In terms of the choice of the Solvent-solvent well deptlg is of ordere times the number
standard state inherent in physical chemistry B, one  of molecules in a solvent disk. Typical experimental systems
notes from Eq(27) and Eqgs(19) and(20) that in this regime  would therefore show strong colloidal effects, since disks
the ideal lfin] dependence of the chemical potential has beegynthesized from organic materials are likely to be many
almost entirely canceled by the concentration dependence &mes bigger in size than a single water molecule.
InK; or rather, postponed until low concentration. In Sec. IV, ~ The mapping onto a one-dimensional LG model therefore
| shall discuss a mapping to three-dimensional systems th&equires an effective solvent-solvent well depth. In the
implies that such extreme behavior is potentially a commoriemperature range accessible to the simulations, a reasonable
physical situation. choice of effective LG interaction parameters appropriate to
If the solute-solute attraction is the dominant interaction,the model of Ref[7] is
then the lowest value df shifts towards or lies at=0, and
the equilibrium constant that varies significantly with con-
centration at fixed pressure is that describing solvent clusters Epn=€E, €p=¢€
in an excess of solute; alternatively, swap the labels solute
and solvent. Finally, if one wanted the concentration depen-
dence at, say, fixed and ug, then althougtp,, is now a  This mapping shows that the simulation model lies very
function of concentration it is still straightforward to calcu- much in the strong amphiphilic class discussed in Sec. IlI;
late the behavior in any given situatigim the same manner which is a point that was not appreciated in H&0] where
as discussed in Sec. Il with regard to equations of stateonly the caseg= €, was considered. To complete the map-
Given the solvent origin of those cases of dramatic concenping, we need to consider what the effective one-dimensional
tration dependence seen at fix€dand p, it is no surprise pressure should be. Here, | shall treat the thickness of the
that switching to a fixed solvent chemical potential tends tadisks as a single lattice length and taBp to be identical in
suppress such behavior. terms of the appropriate length scales; i.e., in three and one
dimensions. In the moderate pressure regime investigated in
the simulation study, this choice is not crucial. Rather, it is
the interaction set35) that controls the physical behavior.
Figure 1 shows a plot of K versus 1T*, obtained from Eq.

The simulation study of Ref.7] chose, for want of any (28) with the mapping35) that | have just described. Note,
obvious alternative, the same disk-disk attractive well-depthn particular, the extremely strong concentration dependence
(e) as the solvent-solvent interaction. In terms of repulsiveat low concentration, in direct qualitative agreement with the
forces, the solute is a disk with a volume seven times that o$imulation study. In fact, the mapping is essentially a semi-
a solvent particle. This size difference is more than enougljuantitative fit, especially with regard to the magnitude of
to ensure that the system behaves more like a colloidal soldhe concentration dependence as a function of temperature
tion than a molecular mixture. In particular, note that in or-and also to the values of the aggregation number that are
der to map this three-dimensional model onto the oneinvolved (the latter are relatively low, since simulation can-
dimensional LG analogy, we need to treat any break in aiot readily cope withN>3, because this would involve
chain as due to intervening disks of solvent. That is, eaclequilibrating a cluster distribution with significant contribu-
side of a solute disk interacts with many solvent moleculestions fromn>20). The equivalent simulation plot, Fig. 2 of
which, therefore, need to be summed-up to define an effedRef. [7], shows a small upwards shift, as if the repulsive-
tive solvent disk. The isodesmic chemical equilibria Ej,  force length scale does not quite map onto a single lattice
is concerned with the relocation of entire disks of solvent.spacing, and at highest concentration shows significant
For example, when a solute joins the end of a chain, onélownwards curvature. Of course, at such high concentration
whole solvent disk is liberated from being stuck between twoone would hope that the mapping to an effective one-
solutes, so that overall, two disk-solvent contact areas ardimensional model would start to become deficient, since
replaced by a disk-disk and a solvent-solvent contact aredhis is where the three-dimensional cluster-cluster interac-
Similarly, when two solvent disks are separated to accomtions should start to effect the physics. For example, in a
modate a solute, then two surfaces of solvent are createdoncentrated three-dimensional model, there will be signifi-
The loss of attractive solvent-solvent energy is much greaterant screening of chain ends from solvent, thereby reducing
thankgT unlessT* =kgT/e€ is large. This explains why the the free-energy cost of breaking a chain. One should also be
low concentration simulation data could not be collected abeware of finite-size effects acting to enhance the aggrega-
T* less than about 1.5, because then the self-assembly wésn. Notwithstanding these relatively small differences, the
just too strong to be equilibrated. The simulation study mearemarkable agreement of Fig. 1 with the simulation data
sured the partial molecular volumes of disk and solventstrongly supports the colloidal analogy introduced by Attard
which can be used to define an effective volume of the sol{8] and, in addition, allows one to use the exactly solvable

15

1+_|_—*

. ac=-1. (35)

IV. MAPPING TO LINEAR SELF-ASSEMBLY WITHIN
THREE-DIMENSIONAL SYSTEMS
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InK V. AGGREGATE CHEMICAL POTENTIALS
161 In the phenomenology of self-assembly, the left side of
Eq. (26) is B times the chemical potential of aggregates of
sizen. This interpretation arises because the fadncan be
14 derived by treating each cluster size as a separate species and
then minimizing the grand potential with respect to fluctua-
1ol tions in the number of species of type as if the ensemble
was defined by an entire set of chemical potentials rather
than just one solute and one solvent chemical potential. |
10, Xz0 have already noted that the exact LG results are consistent
with this picture providegk,=npu,; see Eqs(26) and(27).
This raises the question as to whethgr has any physical
8 meaning at all, or is just a tautological partitioning of the
Gibbs free energy of solute amongst the varigiypically
6l ill-defined environments that a solute molecule can inhabit.
We can answer this question precisely within the one-
dimensional LG models for two reasons; firstly, because we
4f can chose a completely unambiguous partitioning into clus-
X =12 ters(as in Sec. ll], and secondly, because we can evaluate
exactly the chemical potential of any well-defined species,
2 min from potential distribution theory.
X=X Let us then apply sum rulé) to a species of size. The
. hard-core insertion factor is just (p)(1—p,)" " % i.e., the
0o 0.2 0.4 0.6 0.8 1 probability of finding a cavity of lengtm whose left end

(say sits on a chosen lattice site. The Boltzmann factor av-
erage in the presence of the cavity consists of a sum of three
terms, arising from the probability that both ends of the cav-

FIG. 1. Isobaric temperature dependence of the isodesmic equity are separated from solvent as well solute, the probability
librium constant, from a one-dimensional lattice-gas mixture Eq.that one end is in contact with solvent but the other is not,
(28), with interaction parameterg35) chosen to map the one- and finally, the probability that solvent is in contact with

dimensional model onto the three-dimensional system simulated ipoth ends, respectively. The potential distribution theorem
Ref. [7]; see text. The three curves display the nature of the concan, therefore, be evaluated as
centration dependence, which is strong at low concentration. All the

plots are at a fixed pressugg=0.5¢, in units that suppress the [n]e*ﬁ/TnZ(1_p)(1_pw)n*1[(1_pw)2+ 2(1+ac)

length scale of one lattice spacing.

X (1= pu) (1= X) put (1+ac) A(1—x) 203,

=(1=p)(1=pw)" T1=py+(1+ac)(1-Xy) pul®

one-dimensional LG models to explain or predict the physics
of isodesmic chemical equilibria in real systems. =(1-p)(1=py)" 1(1-Y)?

For real systems, such as those describd8jinthe set of _ 2
effective interaction parameters would not usually involve a X[t anXupwt ac(l ) pul® (36
negative value ofic nor such a low value oé,, as inthe where the last line has been obtained using &4). So
simulation set(35). However, from Eqs(32) and(34), one  when Eq.(18) is substituted, one finds that
only requires thatig be significantly larger thaa, andac

(with the latter positivi in order to be in the strongly am- oBiin— Xp Y |\t 1
phiphilic or sticky-solvent colloidal regime. Thus the phe- 1-p\1-py, [1+apXypwt ac(1—Xy) pwl®
nomena seen in the simulation model may well be generic (37

whenever the solvent has a high surface tension, such as

water. In fact, the Boltzmann factors become very large for !l the factors on the right side of E¢37) can be rewritten
typical experimental systems, since solvating a big disk " {€rms Ofua ande,, using Eq/25) with sum rule(16) and

shaped solute involves the creation of a large amount otlhe standard potential distribution theorem Ed<€)—(12)

water-solute surface area, on the scale of a water molecule. eBiin= gl gBluat en)n—1 (38)
One, therefore, anticipates high values ok lvhich itself '
results from the difference of much larger numbers. Accord-, finally
ingly, it will not be that straightforward to characterize the

basic amphiphilic nature of real systeff@. In short, these Nua=mp—(N—1)€x. (39
systems involve too many molecular contacts to be readily

treated microscopically, but are not sufficiently colloidal to This exact result differs from the expected phenomenology
allow one to immediately make use of measured surface terfhua= up,) by a term that is clearly the internal contribution
sion data. to the Gibbs free energy per particle within a cluster of size
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n. In hindsight, this is obvious. Namely, the potential distri- "_ +31nA _ 3,0 K'=K. (41
bution theorem treats a given species as a true particle spe- Bun=Pua v Bre = Bpes . (4D

cies and, thus, is only concerned with configurational anthng therefore the equilibrium constant is unaffected by the
entropic contributions that arise from interactions with otherjnciusion of guantal degrees of freedom into the ideal terms.
species. To describe chemical equilibria we need the totafhe jsodesmic aggregation number is not affected by either
Gibbs free energy, but nevertheless, it is interesting that ONgq. (40) or Eq. (41), since the cluster distribution remains
can rigorously define a cluster chemical potential using Pogxponential and is therefore defined in terms of a dimension-
tential distribution theory. _ o less quantityn]/[n— 1], independent of the choice of length
A particularly interesting case is the limit=1, where gcales. In the second case, this arose only because the con-

there is no longer an internal contribution. Although sistent method of including quantal degrees of freedom con-
m1=pa, this doesnot hold because a cluster of size one is yipyted a term strictly proportional to in .. Namely, to
equivalent to a molecular species. Rather, objects that be'”‘&eserve the condition for chemical equilibria{=ng,) in

to clasg1] must always be separated from all other solute b%a |imit of ideality, we require Iff]A%)=nIn([1]A%) to-

at least one lattice spacing, unlike real molecules. Accordgether with the law of mass action ir? the classical length

ingly, in the special case=1 of the proof given above, the ¢ 5o (n]=[1]") and, henceA ,= A" as used above
statistical mechanics is not simply reducing to an identity, ' " '

but instead is proving the important result that at chemical
equilibrium the chemical potential of a molecule does not
distinguish between the instantaneous environments it may For LG mixtures in which the repulsive interactions have
find itself in. identical range, we see from E¢B4) that the strongest con-
At this point, it is worthwhile to consider how the map- centration dependence, or colloidal behavior, is the limit

ping of a LG model to a real system is affected by the choiceyvhere only the solvent-solvent interactions are attractive
of length scale, inherent in the dimensionspoéind, hence,

K, and the related issue of the incorporation of de Broglie K(x=0) 5 0, 1
wavelengths. Let us denote with a superscript prime, any m:(1+aspw)[(l—pw) +ag'], (42
quantity that is redefined when the length scale is altered
from one lattice spacing to any other microscopic length  provided of course the pressure is consistent with condition
From the definition of an ideal gas limit and the isodesmic(31) at ac=0. At temperatures such thgteg is large, this
equilibrium constant, in terms of number densities, we haveatio is exponentially large, for pressures that are neither very
the following relationships: low nor very high p,, not too close to zero or oheThis
dramatic self-assembly of hard solute particles at low con-
, o’ 0 , centration, is driven by what in colloid science is referred to
Bua=Bpatino,  Bu. =pu.+Ino, K'=Kla, as solvent pressure, i.e., sticky solvent-solvent interactions.
(40 It is also of interest to consider cases where there are no
attractive interactions between any species, but the solute-
where in a three-dimensional modelbecomesy3. The fact  solvent repulsive range is greater than that of the solvent-
that the equilibrium constant varies with the choice of unit ofsolvent and solute-solute repulsions. In such a model, self-
length indicates that there is a natural length scale involve@ssembly is driven by free-volume considerations alone. It
in the process of self-assembly. This is the microscopidnight conceivably be possible to find approximate realiza-
length at whichp and[n] can be treated as probabilities, i.e., tions of this physics in nature, if for example the solute mol-
their maximum physical value is unity. On this scale, the€cules contained flexible tails that coiled up when confined
classical scale, the ideal gas limit reduces to the law of mas#ith like tails, but regardless of such speculations it is still of
action in the form{n]=[1]", i.e., Kigea= 1. Now consider, academic interest to investigate the role of entropy in situa-
in the real world, how the quantum ideal degrees of freedoniions where self-assembly is dominated by free-volume ef-
should be incorporated. If the clusters were real species, thdicts. The lattice-gas model of Sec. Il can be used to realize
one would be tempted to give each cluster its own de Broglighis phenomena, by taking the special case where the unlike
wavelength defined in terms of the total mass of the clustefepulsive range is two lattice spacingac —1, as=ag
(proportional ton). Rotational quantum factors would then =0). Here, the condition(31) is always satisfied, and
also be required. This approach would alter thelepen- Ed. (34) reduces to the result
dence of the chemical equilibria, so that, for example, the
exponential form for isodesmic chemical equilibr{a9) K(x=0) _ 2 43)
would no longer hold12]. However, this is inappropriate to K(x=x™"  2—p¢’
chemical equilibria, where the clusters are composed of mol- .
ecules that carry their own quantal degrees of freedom withvith xX™"=1/2, as follows from the symmetry of the special
them. For example, consider all the vibrational modesmodel under consideration. This shows that free-volume
present in a self-assembled chain of molecules. The correconsiderations alone lead to a much more restricted concen-
approach is to include a factor &3", where A is the de tration dependence to self-assembly. Even at infinite pres-
Broglie wavelength of a single molecule in units of the clas-sure, the equilibrium constant only doubles as concentration
sical length scale, into the ideal terftt3]. Thus, denoting is reduced to the low concentration limit. Nevertheless, the
this new definition of a standard state by subscript doubleffect clearly belongs to the same phenomena that | have
prime, we have the mappin@n three dimensions defined as amphiphilic, and it is at least of conceptual inter-

VI. HARD-BODY AMPHIPHILES
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est that self-assembly could be studied entirely within thehere is an obvious alternative class of solute cluster defini-
context of hard-body mode[44]. At the maximum value of tions. Namely, one could define a solute cluster as any clus-
the equilibrium constant, the special hard-body model reter that actively excludes solvent, regardless of the absence

duces to the simple result, see Egg), of some solute-solute contacts. In terms of the LG models
discussed in this paper, taking the linat=—1 offers a
InK(x=0,1)=28p. (44 well-defined way of exploring this issue, i.e., since solvent is

now completely excluded from a lattice site lying either side

At constant pressure, this implies that the maximum driving¢ solute, it makes sense in this case to ignore any isolated

force for self-assembly arises entirely from enthalpy; K of latti it | hain of solute. At first siaht
AHO(x=0.1)= —2p, AS%(x=0.1)=0. In the ordinary am- break of one lattice unit in a chain of solute. irst sight,

hiohili Fia. 1 of Sec. IV find this could allow for a dramatic change in the self-assembly,
phiphilic case, Fig. 1 of Sec. IV, one finds an even strongeg;, .o solute clusters as defined previously can now break up
dominance of enthalpy; namely, that entropy actually act

. . X Svithout altering the redefined chain length. Thus, our new
against the self-assembly. Before jumping to completely th

. . . Rluster definition allows for a significant amount of entropy
wrong conclusion that free-volume considerations are not ' be accommodated within a single chain. On the other

zponjlbrlle fc_)r the hard—li)oﬁy selféassembly, |:]must be re.m?]”hand, the absence of phase transitions in short-ranged one-
ered that In statistical thermodynamics when one SwWittheg;yansjonal models implies that the new cluster definition

from a constant volume ensemble to a constant pressure egannot involve a qualitative change in the isodesmic chemi-
semble then free volume entropy is transformed into en- al equilibria

thalpy. For example, although the hard-sphere fluid to crystal Adopting the new cluster definition, for the purposes of

phase transition is almost universally referred to as an eniq section only, let us now redo the analysis of Sec. Ill, to

tropy drivgn phase transition, at constant .press(wbich obtain the solvent-excluded cluster distribution. In place of
could easily be argued to be the most physically correct apeq, (17), the concentration of isolated solute becomes
proach, the phase transition is driven by enthalpy to the

extent that configurational entropy not only works against [1]=xp(1—Y)2(1—Xypw)?, (46)
the transition but does so to an extent of around 12 times the
ideal entropy cost where the additional squared factor arises because the solute
would not now be regarded as isolated if there was a solute
0= AG _ @(Ps‘ﬂ) _ ﬁ (45) lying two squares awaysince solvent could not get in be-
NkgT oL Ps Nkg’ tween whemac=—1). Note that | am continuing to denote
) ) the probability of finding a solute next to another solute as
whereG denotes the Gibbs free energy and subscliptS v, without of course assuming th¥tremains the fundamen-
denote liquid and solid, respectively. Since the compressibiltg| quantity defining self-assembly. | shall also continue to
ity factor Bp/p_ is roughly 13 at the phase transition, the ysek as defined by the old cluster definition, E¢s9) and
enthalpy and the entropy changes are both large and neggy), although it is no longer the equilibrium constant that we

tive. The ideal entropy cost corresponds to a compressibilityjesire to calculate. In place of E€L9), the new cluster dis-
factor of unity and so is only 1/13 of the total entropy cost.tripution is

This is, of course, only stating the result that in order to

maintain a fixed pressure, when hard sphere liquid freezes [N]=[1][Y+(1—Y)xuoul" % (47)

the volume must shrink substantially; as one knows from the

increase in density of around 10%. Nevertheless, at constaiiihe factor multiplied to the power af—1 has been modi-
pressure it is clearly completely incorrect to describe hardied in this particular way, because when expanded, as in the
sphere crystallization as an entropy driven phase transition.hinomial theorem, each term expresses the number of ways
have belabored this point because it highlights the care witlof introducingn—m single unit breaks in a chain of length
which one must use the terms entropy driven and enthalpp under the previous definition. So, the new cluster proper-
driven, especially in chemical equilibria phenomena, wherties are readily expressed in terms of the previous cluster
one is invariably working at fixed pressure and, thus, haslistribution

transformed free-volume effects, from entrogys) into en-

thalpy (pAV). The exact LG mixture results given in Secs. || ?:Y( 14 (1_Y)XWPW> 48
and 1l are readily evaluated to yield the enthalpic and en- Y '
tropic contributions to the isodesmic chemical equilikifar
example, one can read off Fig. 1 the standard enthalpy and =Y[1+e AlPtea] (49
entropy as a function of temperature, from slopes and inter-
cepts, respectivelybut interpreting the results in terms of (1=Y)Xppw
molecular physics demands full attention to the issue that | 1+ v
have just stressed. KeK| ———— 1/, (50)
(1=Xwpw)
VII. SOLVENT-EXCLUDED CLUSTER DEFINITION K[l+e—ﬁ(p+eA)]
Since the choice of cluster definition is not unique, one  (I—Xupw)? ®D

should sensibly enquire as to the significance of the choice.
Attard [8] has pointed out that for amphiphilic systems, in- where the quantities with a hat belong to the new cluster
volving significant solvent exclusion from in between solute,distribution and the second version of each result follows
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from inserting Eq.(24) in the limit ac=—1. Note that the with the only difference being that arising from the termina-
concentration dependence of the equilibrium constant is retion at the wall

duced and the aggregation number is increased, by switching

to the solvent excluded definition. The effects are not large in W w

the sticky solvent case however, because the solvent-solvent [1]"=x"p"(1-Y), (52)
attractions do not contribute directly to the renormalization.
Notwithstanding this conclusion, it is possible that the above
analysis is of significance to computer simulation stufifds
This is because one can envisage situations in which the S )
solvent excluded distribution was not equilibrated, for ex-Thus the_ W_aII _cluster distribution is |d_ent|cal to the bulk
ample if all the solutes became trapped in a single renormagluster distribution, apart from an amplitude factor, and the
ized cluster, but that by using the ordinary cluster distribu-29gregation number is again given by i2{). The probabil-
tion one might observe many apparent breaks in the chaidty of adding another monomer to the far end of a chain
i.e., breaks of one spacing that do not let in solvent. Here, th@dsorbed at the wall is obviously no different to that for
ordinary cluster distribution would look equilibrated, with an J0ining a bulk cluster, i.e K is also the equilibrium constant
isodesmic exponential form appropriate to the quasi-onefor the equilibria

dimensional subsystem, whereas the solvent excluded distri-

bution would show that the full three-dimensional simulation W W

is not equilibrated8]. [1]+In=1]"=[n]" (54

[n]¥=[1]"Y" "%, (53

However, when modeling a three-dimensional system of suf-
ficiently large surface area, the ratio of wall clusters to bulk
clusters is controlled by the process of attaching a chain to

As a final application of the exact physics of isodesmicthe wall (n]=[n]")
equilibria, let us consider inhomogeneous systems in which
the ends of the chains are able to adsorb onto a suftace w w
wall). There are now two cluster distributions present; W Ez &

- : KW= . (55

namely, clusters in bulk and clusters with one end attached to [n] [1]
the wall. Of course, in a three-dimensional system, there are
other possibilities, such as clusters growing along the surfack is therefore of some interest to inquire under what circum-
and chains that attach twice or more to the surfdceps. stanceK" differs greatly from unity.
The one-dimensional LG model can only apply if the three- Substituting Egs. (52) and (17), we have KY
dimensional nature plays no role. This situation is plausible=x"p"/xp(1—Y) and so there are three obvious cases we
for discotic solutions in cases where the solute disks asean consider without introducing any further energigsa
semble into relatively stiff chains and are highly disfavoredsolute wall, wherex"p"'=Y and thusK" follows immedi-
from lying edge onto the wall. Then, at moderate to lowately from the results of Sec. llI(ji) a solvent wall, where
concentration, one envisages a situation where aggregatg¥p" is the probability of finding a solute next to a solvent
sometimes terminate on the surface. The question that caand can thus be obtained in direct analogy to the calculation
then be answered is, how is the cluster distribution of atused to derive Eq.(24); and (ii) a hard wall, where
tached chains related to the cluster distribution in bulk?  x¥p¥=x,p,, . The first two cases are directly related to ex-

Consider a semi-infinite LG mixture in one dimension, perimental procedures that use self-assembled monolayer
where the left side of the system ends in a wall and thehemistry to generate surfaces that are either solutelike or
wall-fluid interactions are limited to one lattice spacing. Farsolventlike; for example, by bonding a monolayer of solute
from the wall, the cluster distribution is that calculated into a mica or gold substrate in a particular orientation such as
Sec. lll. Usingsuperscript wto denote a chain whose left discotic molecules lying flat. Inserting results from Sec. llI
end lies next to a general wallvith subscript wcontinuing  and carrying out the recalculation needed for céie the
to label a hard wall quantily one sees immediately that the exact LG solutions for these three situations éjesolute
form of the wall cluster distribution remains exponential, wall

VIII. LINEAR SELF-ASSEMBLY AT SURFACES

INK¥ Bes | 1+[apx3+ag(1—xy) 2+ 2acXy(1—xy) 102 ) s
e N T (T a0 (1 X pul[ L put (1F 8 Xt (1 80) (1 X)) (56)
(i) solvent wall
w_ 1+ [anXp, +ap(1—Xy) 2+ 28cX(1 - Xy) 1y, )
InK™=Bec+In [1-pwt(1+ac)(1—Xy)pwll[l—pyt+(1+ag)(l—Xy)pwt (1+ac)Xypwl/’ (57
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and (iii ) hard wall in nature, rather than molecular, i.e., a break in a chain in-
volves the insertion of many solvent molecules. Thus, the
) 5 ) mapping is based on imagining solvent to be divided, at any
1+[aaxy,+ag(1—Xy) " +2acXy(1—Xw) 1oy instant, into solvent disks. This in turn implies that the sticky
1-py+(1+ac)(1—Xy) pw ' solvent limit, where the one-dimensional solvent-solvent at-
(58)  tractions outway all other effects, is potentially a common
hysical situation. At fixed total pressure, this latter case is

InKW=1In

At low temperature, w_hen all the interaction parameterissociated with a dramatic increase of the isodesmic equilib-
au,ag,ac are exponentially large, the above results reduceri

to a simple balance of energies in the low concentration - constant in the limit of low concentration; driven by
o P 19 what colloidal scientists would recognize as solvent pressure.
limit; provided the pressure is not extremely low

This paper also makes use of exact results of one-
dimensional LG mixtures to explore the physics that lies
solute wall:  kgTINK¥(x=0)= e+ eg—2¢ec, (59) behind the well known phenomenology qf chemical equilit_)—
ria of self-assembly; Secs. V to VIII. Section V shows that it
is possible to give a precise meaning to the chemical poten-
) Wiy (N tial of an aggregate, via potential distribution theory, pro-
solventwall: kgTInK"(x=0)=0, (60 vided the chosen cluster definition is well defingd ambi-
guity about which cluster a given molecule belongs to in any
hard wall: kgTINK¥(x=0)= eg— ec+kgTIN(1— e 5P). particular configuration It is also of interest to note from
61) Eqg. (27) that u,=nu, is an exact consequence of statistical
mechanics, and that,= u, is not just an identitysee Sec.
The most interesting class of behavior is therefore the stickyV) but rather the same statement that the chemical potential
solvent case discussed in Sec. IV, i@g>a,,ac. Here, Of asolute cannot distinguish the cluster environment that we
when the wall-solvent interaction is not stickpuch as a chose to assign it to for any particular configuration. Section
solute wall or a hard walll the value ofK" is exponentially VI discussed self-assembly in hard-body systems, showing
greater than unity in the low concentration regime. Accord-that amphiphilic behavior can continue to hold even in the
ingly, in this situation, the probability of finding a chain end absence of attractive interactions. This somewhat esoteric ex-
adsorbed to the surface is very much greater than finding th@rcise highlighted the significance to free volume arguments
left end of an identical length chain at any specified bulkof choosing to work at constant pressiitee standard choice
lattice site. When mapped onto three-dimensional system#) chemical equilibrig i.e., enthalpy now plays the role that
this implies that the low concentration regime of isodesmicentropy would have at fixed volume. The nonuniqueness of
chemical equilibria in a sticky solvent in the presence of athe choice of cluster definition was tackled in Sec. VII by
solute surface, involves a strong tendency for chain ends tgxplicitly recalculating the cluster distribution for a particu-
anchor to the wall. However, the form and aggregation numlar example of a solvent-exclusion definition. As eXpeCted,
ber of the wall clusters will be identical to the bulk cluster qualitative changeésuch as the appearance of a phase tran-
distribution, provided the clusters are not interacting side bysition) cannot be altered by changing the cluster definition,
side, so that one envisages this regime as a random forest Bt significant quantitative and conceptual consequences can
floating anchored chains, generated entirely by the colloida®rise in amphiphilic systems. Finally, Sec. VIII discusses a
effect known as solvent pressure. In contrast, if the solvenotentially useful mapping of three-dimensional inhomoge-
wall case mapped to three-dimensional systems in which thBeous systems to semi-infinite one-dimensional LG models.
chains adsorbed along the wall, strong solvent-induced selfthis could only hold when the most favored adsorption of

assembly parallel to the wall would be consistent with layer-chains is via attachment end on to a surface; as with disks
by-layer growth. that lie flat on the surface. The LG results imply that the

sticky-solvent regime of this class involves an overwhelming
IX. SUMMARY driving force for chains to attach by one end to a solute wall
(or a hard wall.
| have explained in detail how potential distribution In everyone of the above topics, the results obtained from
theory is able to solve lattice-gas mixture problems in onethe one-dimensional LG models are exact. That is, there ex-
dimensional systems exactly, with an absolute minimum ofsts an exact physics of isodesmic chemical equilibria. This
mathematical effort. In particular, this approach leads diphysics allows important conceptual conclusions concerning
rectly to the full equation of state, in any desired phasehe physical chemistry of self-assembly, as well as yielding
space, together with the cluster properties of aggregateguantitative predictions of linear self-assembly phenomena.
states. Section Il proved that LG mixture models are exactn general, the physical chemists appear to have been re-
representations of isodesmic chemical equilibria, at all conmarkably successful in developing what is in fact an exact
centrations. Thus, the cluster distributi¢i®) and the phe- phenomenology of self-assembly, with the exception that the
nomenological form(27) are not just ideal approximations, significance of concentration dependence has not been fully
but instead hold everywhere throughout phase space. Appreciated. Thus, the main additional point to add to the
highly successful interpretation of recent surprising simulaphysical chemistry of self-assembly is to be beware that in
tion data followed from a simple mapping of three-dimen-many amphiphilic systems the physics will be more closely
sional discotic amphiphilic solutions to one-dimensionalrelated to colloidal science than that of typical molecular
models. The key point here is that such systems are colloidaolutions.
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APPENDIX A: PRESSURE SUM RULE

The pressure is defined by the Gibbs-Duhem equatiorPN€ €ventually proves equivalence, i.e., sum il§). To
which we can write as F:omplete this derivation, note in particular that after rewrit-

ing
—Bua — ~Bug
__F?'Bp:peﬁl/«A—&(Xe ) +peﬁﬂ«s—a[(1 x)e ] g1 1-p Jl 1-p P 1-p
Ipw Ipw Ipw (,A]_) n p n p p (A4)
= +
Ipw P Ipw P Ipw
and then use potential distribution theory to eliminate theone can eliminatg entirely from the final derivative, using
chemical potentials from the right side Eq. (15).
aBp J 1-p APPENDIX B: LATTICE-GAS ENERGY
———=pefir——I|| ——|[1+anxypw _ _ _ _
Ipw dpwl\ P For a one-dimensional binary LG mixture, the total en-
J [[1-p ergy per particle U/N) is, by inspection,
+aC(1_XW)pW]2 +peBMB_[(_)
pwl\ P u
N~ X(€apawaT €cPBwA)
X[1+ag(1—x +acXypwl?
: 8l wPut ackupu] —(1-Xx)(€spawa™ €cPAwB) (BY)
dIn[(1—-p)lp] 2(1—p)pw where | have introduced a notation such that a subscript
= Ipu + 1—py, IwJ denotes a density of typenext to a wall of typel. In
terms of the notation of Sec. Ill, we hayg,,=Y and
2 2 B Pewa=(1—Xya) pwa, Which were evaluated via potential
X | aaXy,tap(1—Xy) +2acXy(1—Xy) distribution theory, i.e., Eq9.22) and (23). The other two
analogous wall densities follow from the same analysis, but
Xy applied to measuring the chemical potentials next to a wall
Flan= aB(l_XWHaC(l_ZXW)]pW%}' of type B; as discussed in Sec. VIII. One can check these

derivations against the symmetry requiremeRrpg,a
=(1-X)paws, i-€., the second and last terms of EB1),
the cross interaction energies, are equal. Collecting all these
If one then evaluates the quantiyn(1l—p,)/dp,, Via re-  expressions together and inserting into Egl) yields the

(A2)

peated use of Eq15), beginning with desired result
J
U pulead+ an)Xat ep(1+ap) (LX) +2ec(1+ac)Xu(1—Xy)] B2
N 1+ [aaxs+as(1—xy)*+2acXu(1—Xu) 1pw
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