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Physics of isodesmic chemical equilibria in solution
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Department of Physics and Astronomy, and Centre for Self-Organising Molecular Systems, University of Leeds,

Leeds LS2 9JT, United Kingdom
~Received 25 November 1996!

Exactly solvable one-dimensional lattice-gas model mixtures are used to develop a physics of isodesmic
chemical equilibria. Potential distribution theory is used to solve directly for the equation of state and to obtain
the cluster statistics needed to discuss self-assembly. A mapping of three-dimensional amphiphilic discotic
solutions onto one-dimensional models is proposed and is found to explain the remarkable nature of previous
computer simulation data. Here, at fixed pressure, the low concentration regime involves an extreme concen-
tration dependence to solute aggregation, associated with a maximum in the equilibrium constant. This behav-
ior is a class of colloidal phenomena, driven by solvent-solvent attractive interactions. In addition, the exact
physics of isodesmic chemical equilibria is used to investigate a variety of conceptual issues concerning the
phenomenology of self-assembly. One finds thatm̄n5nmA is an exact consequence of statistical mechanics and
that it is even possible to give a precise meaning to the chemical potential of an aggregate, that, for example,
defines what is meant physically by the identitym̄15mA . The nonuniqueness of the choice of cluster definition
is considered in the context of solvent-excluded clusters; an explicit example appropriate to amphiphilic
systems. Finally, the mapping to three-dimensional discotic solutions is extended to inhomogeneous phenom-
ena whereby the disks prefer to adsorb flat onto a surface. This mapping implies that the sticky solvent regime
is associated with an overwhelming driving force for chains to attach by one end to a solutelike wall.
@S1063-651X~97!03905-6#

PACS number~s!: 82.70.2y, 05.20.2y, 61.20.Qg, 82.60.Hc
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I. INTRODUCTION

Complex fluids and, in particular, solutions containi
amphiphiles, exhibit the phenomena of self-assembly, as
fined by an equilibrated aggregate distribution resulting fr
the exchange of amphiphiles between an aggregate env
ment and being isolated within a solvent

@1#1@n21#
@n#, ~1!

where@n# denotes the concentration of aggregates compo
of preciselyn amphiphiles. The phenomenology of chemic
equilibria ~see, for example,@1–3#!, based on the law o
mass action, generates a set of equilibrium constants,

Kn[
@n#

@n21#@1#
, ~2!

which in turn define the configurational free energy chan
involved when an amphiphile joins an aggregate

2 lnKn5bm̄n
02bm̄n21

0 2bm̄1
0, ~3!

bm̄n5bm̄n
01 ln@n#. ~4!

Here, b denotes 1/kBT (T is temperature andkB Boltz-
mann’s constant! and the notationm̄n indicates the identifi-
cation of a chemical potential for aggregates of sizen. The
above language hides a multitude of sins, including:~i! for a
two-component system, fixing two thermodynamic fiel
such asT andp ~pressure!, still leaves one thermodynami
degree of freedom~i.e., when is the concentration depe
dence of an equilibrium ‘‘constant’’ significant?!, ~ii ! the
nonuniqueness of cluster definitions used to define an ag
551063-651X/97/55~5!/5731~12!/$10.00
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gate~even liquid argon contains aggregates at any instan
time!, ~iii ! the chemical meaning of an amphiphile~how
wide can one vary intermolecular interactions and/or m
lecular geometry and still obtain specific aggregates!, and
~iv! what precise statistical mechanical meaning can be
tached tom̄n the so-called aggregate chemical potential@after
all, the only true chemical potentials are those of the sol
(mA) and solvent (mB) molecules, withm̄n5nmA since the
chemical potential of a molecule cannot distinguish betwe
a temporarily isolated or aggregated environment#? One aim
of this paper is to tackle these and related issues exclusi
within the context of statistical mechanics; in short, to d
velop a physics of self-assembly. In particular, I shall re
heavily on an exact representation of liquid state phys
known as potential distribution theory, whereby either in t
canonical or grand canonical ensemble, the chemical po
tial of speciesA is given by the sum rule@4#

rA~r !e2bmA1bvA
ext

~r !5^e2bcA~r !& ~5!

and, hereafter, densities (r) are made dimensionless by ta
ing all lengths to be divided by a hard-core diameter~with de
Broglie wavelengths set to unity!. On the left side of Eq.~5!
the quantityvext denotes any one-body or external fiel
while the right side is the average of a Boltzmann fac
involving the energy of a test particle of speciesA placed at
position r , i.e., c is the hypothetical energy of interactio
between the test particle and the system, with the latter
actually physically affected by the test~or ghost! particle.

The specific purpose of this work is to address the phys
involved in modeling linear self-assembly by chain-formin
discotic amphiphiles. One class of experimental system
has received much attention consists of solutions of d
5731 © 1997 The American Physical Society
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shaped triphenylene based molecules dissolved in wate
particular, an NMR technique has been developed to m
sure the aggregation distribution@5# and simulation modeling
undertaken@6#. The physics of these systems was first ta
led by carrying out an extensive series of computer simu
tions of a generic simplified model of discotic solutions, bo
to confirm the presence of lyotropic nematic and colum
liquid crystal states at high concentration and, relevant to
paper, to measure the cluster statistics of isotropic solut
@7#. To simulate a cluster distribution requires that o
achieve equilibrium of the set of chemical equilibria defin
in Eq. ~1!, for all physically significant values ofn. Clearly,
the model needs to be highly simplified to achieve this go
but this should not effect the underlying physics driving li
ear self-assembly. Note also, that the aggregate ends
consist of a single discotic molecule, so one does not an
pate the presence of a critical micelle concentration and
~2! reduces to isodesmic chemical equilibria~after desmo,
meaning bond!

Kn5K; n52,3, . . . . ~6!

In pure systems, the density dependence of an equilibr
constant can only arise from cluster-cluster interactio
which usually lead to a shift inK towards larger clusters
Thus, it was natural for the authors of Ref.@7# to anticipate
that K would become independent of concentration at l
concentration, where it would presumably be a minimu
However, the simulation study found precisely the oppos
physics. Attard@8# was the first to suggest that a strong co
centration dependence in the dilute limit of linear se
assembly could be understood by analogy with colloidal s
tems at fixed pressure~cf. clay swelling!. Attard used an
effective medium approximation to one-dimensional mod
to discuss, amongst a variety of issues, why at fixed pres
the isodesmic equilibrium constant should be at least a lo
maximum at zero concentration. The use of exactly solva
one-dimensional models to elucidate the physics of lin
aggregation was pioneered for single component system
Mitchell, Barnes, and Ninham@9#. In Secs. II and III below,
I shall extend this approach to encompass a general
component lattice-gas mixture@10#. Of course, such model
can always be solved exactly, for example by transfer ma
methods@11#, but for present purposes I shall develop a
rect route to the equation of state and cluster statistics, u
the absolute minimum of mathematical formalism. This,
turn, will enable me to extract a significant amount of ex
physics, directly relevant to the physical chemistry of line
self-assembly in solution~Secs. IV–VIII!. In particular, Sec.
IV proposes a mapping of three-dimensional systems o
one-dimensional models, which is capable of a semiqua
tative explanation of the simulation data of Ref.@7#. This
success appears to be due to the fact that in a th
dimensional solution, a linear aggregate is sheathed by
vent and thus in the absence of aggregate-aggregate int
tions is indeed a quasi one-dimensional object. When a c
is broken, solvent interposes between two solute disks,
manner directly analogous to inserting a disk of solvent.
this mapping to hold, I require solute-solute, solvent-solve
and solute-solvent interactions consistent with the exclus
of solvent molecules between aggregated solute in one d
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tion alone~along the chain but not between chains!. This,
then, will be our working definition of a discotic amphiphil
in the physical world.

II. TWO COMPONENT LATTICE-GAS EQUATION
OF STATE

Consider a two-component lattice-gas~LG! mixture, with
attractive well depths and their associated Boltzmann fac
denoted

eA[eAA ; eB[eBB ; eC[eAB ; ~7!

11aA[ebeA; 11aB[ebeB; 11aC[ebeC. ~8!

The particular example considered in Ref.@10# is the special
caseaA5aB[a andaC521, i.e., when the unlike interac
tion is purely repulsive and of range twice that of the solu
solute (AA) and solvent-solvent (BB) repulsion. For a stan-
dard LG mixture, all repulsive interactions act over a sing
lattice spacing~which hereafter is our unit of length! and
then eachai appearing in Eq.~8! is non-negative. In one
dimension an exact solution of the general model can es
tially be written down by inspection of the potential distr
bution theorem. To grasp how this arises, first note that
right side of Eq.~5! splits into two factors

Pc~r !^e
2bcA~r !&c , ~9!

where the first factor is the probability of inserting the ha
core of a particle of typeA into the fluid at positionr and the
Boltzmann factor average is now to be carried out in
presence of a hard core fixed atr ; hence, the subscriptc,
which for one-dimensional systems I shall write asw ~for
wall!. Evaluating each of these factors separately, we ha

Pc~r !512r, ~10!

^e2bcA~r !&c5@11aAxwrw1aC~12xw!rw#2, ~11!

where the squared form of the right side of Eq.~11! has
arisen because the presence of a hard wall~i.e., a fixed cav-
ity! splits a one-dimensional system into two independ
ensembles~provided attractive interactions do not rea
across the wall!. Here, the total density of solute and solve
in the square adjacent to a hard wall is denotedrw , with
xw and 12xw the associated mole fractions of solute a
solvent, respectively. The left side of the potential distrib
tion theorem~5! is, in similar notation,

xre2bmA. ~12!

To evaluate the wall quantities and, hence, solve the mo
exactly, all one needs to do is apply the potential distribut
theorem once more, this time evaluating the chemical po
tial in a square adjacent to a hard wall~obviously it is the
same chemical potential, since switching from an infinite t
semi-infinite system does not alter the chemical potentia!

xwrwe
2bmA5~12rw!@11aAxwrw1aC~12xw!rw#.

~13!
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Note that this time there is no squared factor, since inte
tions do not reach across the boundary wall. Dividing E
~13! by the first result, Eqs.~12!, ~10!, and ~11!, eliminates
mA to give

xwrw~12r!@11aAxwrw1aC~12xw!rw#5xr~12rw!.
~14!

Of course, the same analysis applies to measuring the so
chemical potential; this just leads to Eq.~14!, but with aA
replaced withaB , and x and xw replaced by 12x and
12xw , respectively. Adding this latter result to Eq.~14!,
eliminatesx to give the key identity

rw~12r!$11@aAxw
21aB~12xw!212aCxw~12xw!#rw%

5r~12rw!. ~15!

At this point, we have achieved an efficient solution f
the equation of state in either of the standard phase sp
(T,r,x) or (T,mB ,x). For example, choosingT sets the val-
ues ofaA , aB , andaC , so that for a specifiedr one has
rw(xw) from Eq. ~15!, which when substituted into Eq.~14!
gives x(xw) and hence, from say Eq.~13!, mA(T,r,x) as
desired. Clearly, all values ofx are obtained by varyingxw
between 0 and 1. At a set value of the solvent chem
potential, one can use the solvent analog of Eq.~13! to obtain
rw(xw) and then substitute into Eq.~15! to get r(xw) and
thus x(xw) from Eq. ~14!. In both the above cases, one
only required to solve a quadratic, which in fact always p
sess a single physical root (0,$r,rw%,1). This uniqueness
of the solution space guarantees the complete absenc
phase transitions, as one expects for all short-ranged
dimensional models, no matter how amphiphilic. By far t
simplest phase space to work in, however, is (T,p,x) as is
invariably desired by physical chemists. This happy circu
stance arises because one can prove the remarkable sum
~see Appendix A!

bp52 ln~12rw!, ~16!

which is obviously the direct analog of the continuum sta
mentbp5rw , expressing mechanical equilibrium in a sy
tem bounded by a hard wall. Note that, as elsewhere, I h
continued to suppress the unit of length, since it is just o
lattice spacing. Due to sum rule~16!, once T and p are
specified, the concentration follows immediately from E
~14! and~15!; for all 0,xw,1. This procedure is just trivia
algebra. For completeness, I derive a general expressio
the total energy per particle in Appendix B; again, the natu
phase space is@T,p,xw(x)#. For all of the results above an
below, taking the limitxw5x51 reduces to the well-known
exact solution of the one-dimensional Ising model@11#, pro-
vided one translates between Ising and lattice-gas symm

III. CLUSTER DISTRIBUTION AND THE
CONCENTRATION DEPENDENCE OF ISODESMIC

CHEMICAL EQUILIBRIA

Let us take~as the obvious choice! the definition of a
cluster of class@n#, to be any continuous chain ofn solute
particles, whose two ends are separated by at least one la
spacing from all other solute. The concentration~number
c-
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density! of isolated solute, members of cluster type@1#, is
therefore defined by the probability of finding a solute a
given lattice point (xr) and the probability of finding a sec
ond solute lying directly to~say! the right of the first~which
I shall denoteY)

@1#5xr~12Y!2. ~17!

Again, the squared factor is exact because in one dimen
a fixed particle splits the system into two independent
sembles. The concentration of clusters of sizen is obtained
by first asking for the probability of finding, say, the left en
occupying a given lattice site (xr), followed byn21 addi-
tional solute particles filling sites to the right (Yn21), plus a
solute gap at either end@(12Y)2#

@n#5xrYn21~12Y!2. ~18!

The LG system is, therefore, an exact representation
isodesmic chemical equilibria, at all concentrations~regard-
less of cluster-cluster interactions!

@n#5@1#Yn21, ~19!

K5
Y

@1#
5

Y

xr~12Y!2
. ~20!

This is an exponential cluster distribution, defined by
single dimensionless quantity (Y); all the self-assembly
properties, therefore, follow from calculatingY. For ex-
ample, the distribution number average~or aggregation num-
ber! is

N̄5~12Y!21. ~21!

SinceY,1, the numbers of large clusters are exponentia
damped with respect to isolated solute, which is yet anot
demonstration of the fact that there can be no phase tra
tion in a one-dimensional short-ranged model. To derive
explicit expression forY, appropriate to any phase spa
invoked to express the equation of state~Sec. II!, let us again
make use of potential distribution theory, this time as a s
rule for the chemical potentials of solute and solvent lyi
adjacent to a fixed solute particle~or wall!. Directly analo-
gous to the derivation of Eq.~13!, we can write by inspec-
tion,

Ye2b~mA1eA!5~12rwA!@11aAxwrw1aC~12xw!rw#,
~22!

~12xwA!rwAe
2b~mB1eC!5~12rwA!@11aB~12xw!rw

1aCxwrw#, ~23!

where the notation subscriptwA denotes a property adjacen
to a wall of solute. The only slight difference with the ha
wall expressions, is that the left sides now contain exter
field contributions (eA or eC). By comparison with Eq.~13!
and the corresponding expression for the solvent chem
potential, one immediately eliminates the chemical potent
from expressions~22! and ~23! and can, thus, readily solv
for rwA andY[xwArwA . The key result is that
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Y5
~11aA!xwrw

@11aAxwrw1aC~12xw!rw#
~24!

5eb~mA1eA2p!, ~25!

where the second form follows from substitution of Eq.~13!
and sum rule~16!.

We have therefore obtained an exact physics of isodes
chemical equilibria and can, thus, directly test the concep
integrity of the phenomenological approach pioneered
physical chemists@1–3#. For example, combining the resul
~25!, ~19!, and~20! yields the form

nbmA5n~2beA1bp!1 lnK1 ln@n# ~26!

[nbm`
01 lnK1 ln@n#, ~27!

which is precisely the form that Eqs.~3! and~4! reduce to in
the case of strict isodesmic equilibria, providedm̄n5nmA , as
anticipated on phenomenological grounds. A direct phys
meaning tom̄n is pursued in Sec. V below. Interestingl
m`
0 (T,p)52eA1p is an enthalpy rather than an energ

without entropic contributions, and note also that it is ind
pendent of concentration and, thus, is strictly constan
fixed temperature and pressure. In contrast, lnK, the so-called
configurational free energy required to create two ends
splitting a chain, is capable of displaying dramatic conc
tration dependence. To see the physical origin of this beh
ior, we can substitute Eq.~24! into Eq. ~20! and use the
results~14!, ~15! to eliminatexr, thereby obtaining an ex
plicit expression forK(T,p,xw)
ic
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lnK5beA

1 lnS 11@aAxw
21aB~12xw!212aCxw~12xw!#rw

2

@12rw1~11aC!~12xw!rw#2
D ,

~28!

and remembering that specifyingT definesaA ,aB ,aC , while
rw512e2bp, and Eqs.~14! and ~15! definex(xw) for any
given (T,p). At fixed temperature and pressure,K typically
varies with concentration in a roughly quadratic manner. T
limiting pure-fluid values are

lnK~x50!5beA1 lnS 11aBrw
2

~11aCrw!2
D , ~29!

lnK~x51!5beA1 lnS 11aArw
2

~12rw!2
D . ~30!

It is straightforward to see from expanding Eq.~28! about
xw.0 and xw,1 that, at fixed temperature and pressu
lnK is a minimum at some intermediate concentration in
cases, such that

aBrw~12rw!.11aC1aCrw~11aCrw!. ~31!

When the condition~31! holds, the value ofxw at the mini-
mum inK is given by
xw
min5

aBrw~12rw!2~11aC!2aCrw~11aCrw!

rw@aA~11aCrw!1aB~12rw!2aC~12rw111aCrw!#
~32!

and the corresponding concentration follows from Eqs.~14! and ~15!:

xmin5
xw
min@11aAxw

minrw1aC~12xw
min!rw#

11@aA~xw
min!21aB~12xw

min!212aCxw
min~12xw

min!#rw
. ~33!

Finally, to see the significance of the drop in the equilibrium constant, one can combine Eq.~32! with

K~x50!

K~x5xmin!
5

~11aBrw
2 !@12rw1~11aC!~12xw

min!rw#2

~11aCrw!2$11@aA~xw
min!21aB~12xw

min!212aCxw
min~12xw

min!#rw
2 %
. ~34!
a
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Let us now use the above results to explore those phys
situations which lead to a strong isobaric concentration
pendence toK, associated with a maximum at lowest co
centration. This is the somewhat counterintuitive situat
encountered in the simulation study of Ref.@7# and explained
by Attard @8# in terms of an analogy with colloidal physics
Firstly, note from condition~31! and sum rule~16! that K
will be a local maximum atx50 in situations where
aB.aC

2 and the pressure is not too high nor too low. If t
latter criteria is not present, then self-assembly is either
low ~pressure too small! or saturated at a high value~pres-
sure too high!. In the special case considered in Ref.@10#,
al
-

n

o

whereaC521 butaA andaB are positive~as appropriate to
attractive interactions!, the equilibrium constant is always
maximum at zero concentration. We can regard all such s
ations as amphiphilic linear self-assembly, since it is driv
by significantly reduced solvent-solute attractions in co
parison with solvent-solvent attractive energy. At lowe
concentration the solute-solute attraction does not contrib
to the concentration dependence of the equilibrium cons
for solute clustering. Since eachai depends exponentially on
the associated attractive well depthe i , it is clear from result
~34! that if eB was say an order of magnitude greater th
both eC andeA , one would find lnK varying by as much as
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ten, as concentration is varied. In these cases, one sees
Eqs.~32! and~33! that xw

min andxmin lie close to 1 and from
Eqs. ~14! and ~15! that x is a highly reduced function o
xw , so thatK drops very rapidly at low concentration, on th
scale ofx. This, in turn, is associated with an almost const
value of xw(x) and, hence, alsoY from Eq. ~24! and the
aggregation number~21!, until lowest concentration wher
eventuallyY must drop to zero. In terms of the choice of th
standard state inherent in physical chemistry Eq.~4!, one
notes from Eq.~27! and Eqs.~19! and~20! that in this regime
the ideal ln@n# dependence of the chemical potential has b
almost entirely canceled by the concentration dependenc
lnK; or rather, postponed until low concentration. In Sec.
I shall discuss a mapping to three-dimensional systems
implies that such extreme behavior is potentially a comm
physical situation.

If the solute-solute attraction is the dominant interactio
then the lowest value ofK shifts towards or lies atx50, and
the equilibrium constant that varies significantly with co
centration at fixed pressure is that describing solvent clus
in an excess of solute; alternatively, swap the labels so
and solvent. Finally, if one wanted the concentration dep
dence at, say, fixedT andmB , then althoughrw is now a
function of concentration it is still straightforward to calc
late the behavior in any given situation~in the same manne
as discussed in Sec. II with regard to equations of sta!.
Given the solvent origin of those cases of dramatic conc
tration dependence seen at fixedT and p, it is no surprise
that switching to a fixed solvent chemical potential tends
suppress such behavior.

IV. MAPPING TO LINEAR SELF-ASSEMBLY WITHIN
THREE-DIMENSIONAL SYSTEMS

The simulation study of Ref.@7# chose, for want of any
obvious alternative, the same disk-disk attractive well-de
(e) as the solvent-solvent interaction. In terms of repuls
forces, the solute is a disk with a volume seven times tha
a solvent particle. This size difference is more than eno
to ensure that the system behaves more like a colloidal s
tion than a molecular mixture. In particular, note that in o
der to map this three-dimensional model onto the o
dimensional LG analogy, we need to treat any break i
chain as due to intervening disks of solvent. That is, e
side of a solute disk interacts with many solvent molecu
which, therefore, need to be summed-up to define an ef
tive solvent disk. The isodesmic chemical equilibria Eq.~1!,
is concerned with the relocation of entire disks of solve
For example, when a solute joins the end of a chain,
whole solvent disk is liberated from being stuck between t
solutes, so that overall, two disk-solvent contact areas
replaced by a disk-disk and a solvent-solvent contact a
Similarly, when two solvent disks are separated to acco
modate a solute, then two surfaces of solvent are crea
The loss of attractive solvent-solvent energy is much gre
thankBT unlessT*[kBT/e is large. This explains why the
low concentration simulation data could not be collected
T* less than about 1.5, because then the self-assembly
just too strong to be equilibrated. The simulation study m
sured the partial molecular volumes of disk and solve
which can be used to define an effective volume of the s
om

t

n
of
,
at
n

,

rs
te
n-

n-

o

h
e
of
h
u-
-
-
a
h
s,
c-

t.
e
o
re
a.
-
d.
er

t
as
-
t,
l-

vent disk and, hence, the number of solvent particles mak
up a solvent disk. This is temperature dependent at the fi
simulation pressure, varying from around 6 atT*53 to
about 10 atT*51.5. If roughly half the solvent molecules o
an effective solvent disk interact with a neighboring disk a
each such surface molecule looses about two intermolec
bonds when the disks are separated, then the effec
solvent-solvent well deptheB is of ordere times the number
of molecules in a solvent disk. Typical experimental syste
would therefore show strong colloidal effects, since dis
synthesized from organic materials are likely to be ma
times bigger in size than a single water molecule.

The mapping onto a one-dimensional LG model theref
requires an effective solvent-solvent well deptheB . In the
temperature range accessible to the simulations, a reason
choice of effective LG interaction parameters appropriate
the model of Ref.@7# is

eA[e, eB5eS 11
15

T* D , aC521. ~35!

This mapping shows that the simulation model lies ve
much in the strong amphiphilic class discussed in Sec.
which is a point that was not appreciated in Ref.@10# where
only the caseeB5eA was considered. To complete the ma
ping, we need to consider what the effective one-dimensio
pressure should be. Here, I shall treat the thickness of
disks as a single lattice length and takebp to be identical in
terms of the appropriate length scales; i.e., in three and
dimensions. In the moderate pressure regime investigate
the simulation study, this choice is not crucial. Rather, it
the interaction set~35! that controls the physical behavio
Figure 1 shows a plot of lnK versus 1/T* , obtained from Eq.
~28! with the mapping~35! that I have just described. Note
in particular, the extremely strong concentration depende
at low concentration, in direct qualitative agreement with t
simulation study. In fact, the mapping is essentially a se
quantitative fit, especially with regard to the magnitude
the concentration dependence as a function of tempera
and also to the values of the aggregation number that
involved ~the latter are relatively low, since simulation ca
not readily cope withN̄.3, because this would involve
equilibrating a cluster distribution with significant contribu
tions fromn.20). The equivalent simulation plot, Fig. 2 o
Ref. @7#, shows a small upwards shift, as if the repulsiv
force length scale does not quite map onto a single lat
spacing, and at highest concentration shows signific
downwards curvature. Of course, at such high concentra
one would hope that the mapping to an effective on
dimensional model would start to become deficient, sin
this is where the three-dimensional cluster-cluster inter
tions should start to effect the physics. For example, in
concentrated three-dimensional model, there will be sign
cant screening of chain ends from solvent, thereby reduc
the free-energy cost of breaking a chain. One should also
beware of finite-size effects acting to enhance the aggre
tion. Notwithstanding these relatively small differences, t
remarkable agreement of Fig. 1 with the simulation d
strongly supports the colloidal analogy introduced by Atta
@8# and, in addition, allows one to use the exactly solva
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one-dimensional LG models to explain or predict the phys
of isodesmic chemical equilibria in real systems.

For real systems, such as those described in@5#, the set of
effective interaction parameters would not usually involve
negative value ofaC nor such a low value ofaA , as in the
simulation set~35!. However, from Eqs.~32! and ~34!, one
only requires thataB be significantly larger thanaA andaC
~with the latter positive!, in order to be in the strongly am
phiphilic or sticky-solvent colloidal regime. Thus the ph
nomena seen in the simulation model may well be gen
whenever the solvent has a high surface tension, suc
water. In fact, the Boltzmann factors become very large
typical experimental systems, since solvating a big di
shaped solute involves the creation of a large amoun
water-solute surface area, on the scale of a water molec
One, therefore, anticipates high values of lnK which itself
results from the difference of much larger numbers. Acco
ingly, it will not be that straightforward to characterize th
basic amphiphilic nature of real systems@6#. In short, these
systems involve too many molecular contacts to be rea
treated microscopically, but are not sufficiently colloidal
allow one to immediately make use of measured surface
sion data.

FIG. 1. Isobaric temperature dependence of the isodesmic e
librium constant, from a one-dimensional lattice-gas mixture
~28!, with interaction parameters~35! chosen to map the one
dimensional model onto the three-dimensional system simulate
Ref. @7#; see text. The three curves display the nature of the c
centration dependence, which is strong at low concentration. All
plots are at a fixed pressurep50.5e, in units that suppress th
length scale of one lattice spacing.
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V. AGGREGATE CHEMICAL POTENTIALS

In the phenomenology of self-assembly, the left side
Eq. ~26! is b times the chemical potential of aggregates
sizen. This interpretation arises because the form~4! can be
derived by treating each cluster size as a separate specie
then minimizing the grand potential with respect to fluctu
tions in the number of species of typen, as if the ensemble
was defined by an entire set of chemical potentials rat
than just one solute and one solvent chemical potentia
have already noted that the exact LG results are consis
with this picture providedm̄n5nmA ; see Eqs.~26! and~27!.
This raises the question as to whetherm̄n has any physical
meaning at all, or is just a tautological partitioning of th
Gibbs free energy of solute amongst the various~typically
ill-defined! environments that a solute molecule can inhab
We can answer this question precisely within the on
dimensional LG models for two reasons; firstly, because
can chose a completely unambiguous partitioning into cl
ters ~as in Sec. III!, and secondly, because we can evalu
exactly the chemical potential of any well-defined speci
from potential distribution theory.

Let us then apply sum rule~5! to a species of sizen. The
hard-core insertion factor is just (12r)(12rw)

n21; i.e., the
probability of finding a cavity of lengthn whose left end
~say! sits on a chosen lattice site. The Boltzmann factor
erage in the presence of the cavity consists of a sum of th
terms, arising from the probability that both ends of the ca
ity are separated from solvent as well solute, the probab
that one end is in contact with solvent but the other is n
and finally, the probability that solvent is in contact wi
both ends, respectively. The potential distribution theor
can, therefore, be evaluated as

@n#e2bm̄n5~12r!~12rw!n21@~12rw!212~11aC!

3~12rw!~12xw!rw1~11aC!2~12xw!2rw
2 #

5~12r!~12rw!n21@12rw1~11aC!~12xw!rw#2

5~12r!~12rw!n21~12Y!2

3@11aAxwrw1aC~12xw!rw#2, ~36!

where the last line has been obtained using Eq.~24!. So
when Eq.~18! is substituted, one finds that

ebm̄n5
xr

12r S Y

12rw
D n21 1

@11aAxwrw1aC~12xw!rw#2
.

~37!

All the factors on the right side of Eq.~37! can be rewritten
in terms ofmA andeA , using Eq.~25! with sum rule~16! and
the standard potential distribution theorem Eqs.~10!–~12!

ebm̄n5ebmA@eb~mA1eA!#n21, ~38!

or finally

nmA5m̄n2~n21!eA . ~39!

This exact result differs from the expected phenomenolo
(nmA5m̄n) by a term that is clearly the internal contributio
to the Gibbs free energy per particle within a cluster of s
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n. In hindsight, this is obvious. Namely, the potential dist
bution theorem treats a given species as a true particle
cies and, thus, is only concerned with configurational a
entropic contributions that arise from interactions with oth
species. To describe chemical equilibria we need the t
Gibbs free energy, but nevertheless, it is interesting that
can rigorously define a cluster chemical potential using
tential distribution theory.

A particularly interesting case is the limitn51, where
there is no longer an internal contribution. Althoug
m̄15mA , this doesnot hold because a cluster of size one
equivalent to a molecular species. Rather, objects that be
to class@1# must always be separated from all other solute
at least one lattice spacing, unlike real molecules. Acco
ingly, in the special casen51 of the proof given above, the
statistical mechanics is not simply reducing to an ident
but instead is proving the important result that at chem
equilibrium the chemical potential of a molecule does n
distinguish between the instantaneous environments it
find itself in.

At this point, it is worthwhile to consider how the map
ping of a LG model to a real system is affected by the cho
of length scale, inherent in the dimensions ofr and, hence,
K, and the related issue of the incorporation of de Brog
wavelengths. Let us denote with a superscript prime,
quantity that is redefined when the length scale is alte
from one lattice spacing to any other microscopic lengths.
From the definition of an ideal gas limit and the isodesm
equilibrium constant, in terms of number densities, we h
the following relationships:

bmA85bmA1 lns, bm`
085bm`

01 lns, K85K/s,
~40!

where in a three-dimensional models becomess3. The fact
that the equilibrium constant varies with the choice of unit
length indicates that there is a natural length scale invol
in the process of self-assembly. This is the microsco
length at whichr and@n# can be treated as probabilities, i.e
their maximum physical value is unity. On this scale, t
classical scale, the ideal gas limit reduces to the law of m
action in the form@n#5@1#n, i.e.,Kideal51. Now consider,
in the real world, how the quantum ideal degrees of freed
should be incorporated. If the clusters were real species,
one would be tempted to give each cluster its own de Bro
wavelength defined in terms of the total mass of the clu
~proportional ton). Rotational quantum factors would the
also be required. This approach would alter then depen-
dence of the chemical equilibria, so that, for example,
exponential form for isodesmic chemical equilibria~19!
would no longer hold@12#. However, this is inappropriate t
chemical equilibria, where the clusters are composed of m
ecules that carry their own quantal degrees of freedom w
them. For example, consider all the vibrational mod
present in a self-assembled chain of molecules. The cor
approach is to include a factor ofL3n, whereL is the de
Broglie wavelength of a single molecule in units of the cla
sical length scale, into the ideal term@13#. Thus, denoting
this new definition of a standard state by subscript dou
prime, we have the mapping~in three dimensions!
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bmA95bmA13 lnL, bm`
095bm`

0 ; K95K, ~41!

and therefore the equilibrium constant is unaffected by
inclusion of quantal degrees of freedom into the ideal term
The isodesmic aggregation number is not affected by ei
Eq. ~40! or Eq. ~41!, since the cluster distribution remain
exponential and is therefore defined in terms of a dimens
less quantity@n#/@n21#, independent of the choice of lengt
scales. In the second case, this arose only because the
sistent method of including quantal degrees of freedom c
tributed a term strictly proportional ton in m̄n . Namely, to
preserve the condition for chemical equilibria (m̄n5nm̄1) in
the limit of ideality, we require ln(@n#Ln

3)5n ln(@1#L3) to-
gether with the law of mass action in the classical len
scale (@n#5@1#n) and, hence,Ln5Ln as used above.

VI. HARD-BODY AMPHIPHILES

For LG mixtures in which the repulsive interactions ha
identical range, we see from Eq.~34! that the strongest con
centration dependence, or colloidal behavior, is the lim
where only the solvent-solvent interactions are attractive

K~x50!

K~x5xmin!
5~11aBrw

2 !@~12rw!21aB
21#, ~42!

provided of course the pressure is consistent with condi
~31! at aC50. At temperatures such thatbeB is large, this
ratio is exponentially large, for pressures that are neither v
low nor very high (rw not too close to zero or one!. This
dramatic self-assembly of hard solute particles at low c
centration, is driven by what in colloid science is referred
as solvent pressure, i.e., sticky solvent-solvent interactio

It is also of interest to consider cases where there are
attractive interactions between any species, but the sol
solvent repulsive range is greater than that of the solve
solvent and solute-solute repulsions. In such a model, s
assembly is driven by free-volume considerations alone
might conceivably be possible to find approximate reali
tions of this physics in nature, if for example the solute m
ecules contained flexible tails that coiled up when confin
with like tails, but regardless of such speculations it is still
academic interest to investigate the role of entropy in sit
tions where self-assembly is dominated by free-volume
fects. The lattice-gas model of Sec. II can be used to rea
this phenomena, by taking the special case where the un
repulsive range is two lattice spacings (aC521, aA5aB
50). Here, the condition~31! is always satisfied, and
Eq. ~34! reduces to the result

K~x50!

K~x5xmin!
5

2

22rw
2 , ~43!

with xmin51/2, as follows from the symmetry of the speci
model under consideration. This shows that free-volu
considerations alone lead to a much more restricted con
tration dependence to self-assembly. Even at infinite p
sure, the equilibrium constant only doubles as concentra
is reduced to the low concentration limit. Nevertheless,
effect clearly belongs to the same phenomena that I h
defined as amphiphilic, and it is at least of conceptual int
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5738 55J. R. HENDERSON
est that self-assembly could be studied entirely within
context of hard-body models@14#. At the maximum value of
the equilibrium constant, the special hard-body model
duces to the simple result, see Eq.~28!,

lnK~x50,1!52bp. ~44!

At constant pressure, this implies that the maximum driv
force for self-assembly arises entirely from enthalp
DH0(x50,1)522p, DS0(x50,1)50. In the ordinary am-
phiphilic case, Fig. 1 of Sec. IV, one finds an even stron
dominance of enthalpy; namely, that entropy actually a
against the self-assembly. Before jumping to completely
wrong conclusion that free-volume considerations are not
sponsible for the hard-body self-assembly, it must be rem
bered that in statistical thermodynamics when one switc
from a constant volume ensemble to a constant pressure
semble then free volume entropy is transformed into
thalpy. For example, although the hard-sphere fluid to cry
phase transition is almost universally referred to as an
tropy driven phase transition, at constant pressure~which
could easily be argued to be the most physically correct
proach!, the phase transition is driven by enthalpy to t
extent that configurational entropy not only works agai
the transition but does so to an extent of around 12 times
ideal entropy cost

05
DG

NkBT
52

bp

rL
S rS2rL

rS
D2

DS

NkB
, ~45!

whereG denotes the Gibbs free energy and subscriptsL, S
denote liquid and solid, respectively. Since the compress
ity factor bp/rL is roughly 13 at the phase transition, th
enthalpy and the entropy changes are both large and n
tive. The ideal entropy cost corresponds to a compressib
factor of unity and so is only 1/13 of the total entropy co
This is, of course, only stating the result that in order
maintain a fixed pressure, when hard sphere liquid free
the volume must shrink substantially; as one knows from
increase in density of around 10%. Nevertheless, at cons
pressure it is clearly completely incorrect to describe h
sphere crystallization as an entropy driven phase transitio
have belabored this point because it highlights the care w
which one must use the terms entropy driven and entha
driven, especially in chemical equilibria phenomena, wh
one is invariably working at fixed pressure and, thus,
transformed free-volume effects, from entropy (DS) into en-
thalpy (pDV). The exact LG mixture results given in Secs.
and III are readily evaluated to yield the enthalpic and
tropic contributions to the isodesmic chemical equilibria~for
example, one can read off Fig. 1 the standard enthalpy
entropy as a function of temperature, from slopes and in
cepts, respectively! but interpreting the results in terms o
molecular physics demands full attention to the issue th
have just stressed.

VII. SOLVENT-EXCLUDED CLUSTER DEFINITION

Since the choice of cluster definition is not unique, o
should sensibly enquire as to the significance of the cho
Attard @8# has pointed out that for amphiphilic systems, i
volving significant solvent exclusion from in between solu
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there is an obvious alternative class of solute cluster de
tions. Namely, one could define a solute cluster as any c
ter that actively excludes solvent, regardless of the abse
of some solute-solute contacts. In terms of the LG mod
discussed in this paper, taking the limitaC521 offers a
well-defined way of exploring this issue, i.e., since solven
now completely excluded from a lattice site lying either si
of a solute, it makes sense in this case to ignore any isol
break of one lattice unit in a chain of solute. At first sigh
this could allow for a dramatic change in the self-assemb
since solute clusters as defined previously can now brea
without altering the redefined chain length. Thus, our n
cluster definition allows for a significant amount of entro
to be accommodated within a single chain. On the ot
hand, the absence of phase transitions in short-ranged
dimensional models implies that the new cluster definit
cannot involve a qualitative change in the isodesmic che
cal equilibria.

Adopting the new cluster definition, for the purposes
this section only, let us now redo the analysis of Sec. III,
obtain the solvent-excluded cluster distribution. In place
Eq. ~17!, the concentration of isolated solute becomes

@1#5xr~12Y!2~12xwrw!2, ~46!

where the additional squared factor arises because the s
would not now be regarded as isolated if there was a so
lying two squares away~since solvent could not get in be
tween whenaC521). Note that I am continuing to denot
the probability of finding a solute next to another solute
Y, without of course assuming thatY remains the fundamen
tal quantity defining self-assembly. I shall also continue
useK as defined by the old cluster definition, Eqs.~19! and
~20!, although it is no longer the equilibrium constant that w
desire to calculate. In place of Eq.~19!, the new cluster dis-
tribution is

@n#5@1#@Y1~12Y!xwrw#n21. ~47!

The factor multiplied to the power ofn21 has been modi-
fied in this particular way, because when expanded, as in
binomial theorem, each term expresses the number of w
of introducingn2m single unit breaks in a chain of lengt
n under the previous definition. So, the new cluster prop
ties are readily expressed in terms of the previous clu
distribution

Ŷ5YS 11
~12Y!xwrw

Y D , ~48!

5Y@11e2b~p1eA!#, ~49!

K̂5KS 11
~12Y!xwrw

Y

~12xwrw!2
D , ~50!

5
K@11e2b~p1eA!#

~12xwrw!2
, ~51!

where the quantities with a hat belong to the new clus
distribution and the second version of each result follo
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from inserting Eq.~24! in the limit aC521. Note that the
concentration dependence of the equilibrium constant is
duced and the aggregation number is increased, by switc
to the solvent excluded definition. The effects are not larg
the sticky solvent case however, because the solvent-so
attractions do not contribute directly to the renormalizatio
Notwithstanding this conclusion, it is possible that the abo
analysis is of significance to computer simulation studies@7#.
This is because one can envisage situations in which
solvent excluded distribution was not equilibrated, for e
ample if all the solutes became trapped in a single renorm
ized cluster, but that by using the ordinary cluster distrib
tion one might observe many apparent breaks in the ch
i.e., breaks of one spacing that do not let in solvent. Here,
ordinary cluster distribution would look equilibrated, with a
isodesmic exponential form appropriate to the quasi-o
dimensional subsystem, whereas the solvent excluded d
bution would show that the full three-dimensional simulati
is not equilibrated@8#.

VIII. LINEAR SELF-ASSEMBLY AT SURFACES

As a final application of the exact physics of isodesm
equilibria, let us consider inhomogeneous systems in wh
the ends of the chains are able to adsorb onto a surface~or
wall!. There are now two cluster distributions prese
namely, clusters in bulk and clusters with one end attache
the wall. Of course, in a three-dimensional system, there
other possibilities, such as clusters growing along the sur
and chains that attach twice or more to the surface~loops!.
The one-dimensional LG model can only apply if the thre
dimensional nature plays no role. This situation is plausi
for discotic solutions in cases where the solute disks
semble into relatively stiff chains and are highly disfavor
from lying edge onto the wall. Then, at moderate to lo
concentration, one envisages a situation where aggreg
sometimes terminate on the surface. The question that
then be answered is, how is the cluster distribution of
tached chains related to the cluster distribution in bulk?

Consider a semi-infinite LG mixture in one dimensio
where the left side of the system ends in a wall and
wall-fluid interactions are limited to one lattice spacing. F
from the wall, the cluster distribution is that calculated
Sec. III. Usingsuperscript wto denote a chain whose le
end lies next to a general wall~with subscript wcontinuing
to label a hard wall quantity!, one sees immediately that th
form of the wall cluster distribution remains exponenti
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with the only difference being that arising from the termin
tion at the wall

@1#w5xwrw~12Y!, ~52!

@n#w5@1#wYn21. ~53!

Thus the wall cluster distribution is identical to the bu
cluster distribution, apart from an amplitude factor, and
aggregation number is again given by Eq.~21!. The probabil-
ity of adding another monomer to the far end of a cha
adsorbed at the wall is obviously no different to that f
joining a bulk cluster, i.e.,K is also the equilibrium constan
for the equilibria

@1#1@n21#w
@n#w. ~54!

However, when modeling a three-dimensional system of s
ficiently large surface area, the ratio of wall clusters to bu
clusters is controlled by the process of attaching a chain
the wall (@n#
@n#w)

Kw[
@n#w

@n#
5

@1#w

@1#
. ~55!

It is therefore of some interest to inquire under what circu
stancesKw differs greatly from unity.

Substituting Eqs. ~52! and ~17!, we have Kw

5xwrw/xr(12Y) and so there are three obvious cases
can consider without introducing any further energies:~i! a
solute wall, wherexwrw5Y and thusKw follows immedi-
ately from the results of Sec. III;~ii ! a solvent wall, where
xwrw is the probability of finding a solute next to a solve
and can thus be obtained in direct analogy to the calcula
used to derive Eq.~24!; and ~iii ! a hard wall, where
xwrw5xwrw . The first two cases are directly related to e
perimental procedures that use self-assembled monol
chemistry to generate surfaces that are either solutelike
solventlike; for example, by bonding a monolayer of solu
to a mica or gold substrate in a particular orientation such
discotic molecules lying flat. Inserting results from Sec.
and carrying out the recalculation needed for case~ii !, the
exact LG solutions for these three situations are~i! solute
wall
lnKw5beA1 lnS 11@aAxw
21aB~12xw!212aCxw~12xw!#rw

2

@12rw1~11aC!~12xw!rw#@12rw1~11aA!xwrw1~11aC!~12xw!rw#
D , ~56!

~ii ! solvent wall

lnKw5beC1 lnS 11@aAxw
21aB~12xw!212aCxw~12xw!#rw

2

@12rw1~11aC!~12xw!rw#@12rw1~11aB!~12xw!rw1~11aC!xwrw#
D , ~57!
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5740 55J. R. HENDERSON
and ~iii ! hard wall

lnKw5 lnS 11@aAxw
21aB~12xw!212aCxw~12xw!#rw

2

12rw1~11aC!~12xw!rw
D .
~58!

At low temperature, when all the interaction paramet
aA ,aB ,aC are exponentially large, the above results redu
to a simple balance of energies in the low concentrat
limit; provided the pressure is not extremely low

solute wall: kBTlnK
w~x50!5eA1eB22eC , ~59!

solvent wall: kBTlnK
w~x50!50, ~60!

hard wall: kBTlnK
w~x50!5eB2eC1kBTln~12e2bp!.

~61!

The most interesting class of behavior is therefore the stic
solvent case discussed in Sec. IV, i.e.,aB@aA ,aC . Here,
when the wall-solvent interaction is not sticky~such as a
solute wall or a hard wall!, the value ofKw is exponentially
greater than unity in the low concentration regime. Acco
ingly, in this situation, the probability of finding a chain en
adsorbed to the surface is very much greater than finding
left end of an identical length chain at any specified b
lattice site. When mapped onto three-dimensional syste
this implies that the low concentration regime of isodesm
chemical equilibria in a sticky solvent in the presence o
solute surface, involves a strong tendency for chain end
anchor to the wall. However, the form and aggregation nu
ber of the wall clusters will be identical to the bulk clust
distribution, provided the clusters are not interacting side
side, so that one envisages this regime as a random fore
floating anchored chains, generated entirely by the collo
effect known as solvent pressure. In contrast, if the solv
wall case mapped to three-dimensional systems in which
chains adsorbed along the wall, strong solvent-induced s
assembly parallel to the wall would be consistent with lay
by-layer growth.

IX. SUMMARY

I have explained in detail how potential distributio
theory is able to solve lattice-gas mixture problems in o
dimensional systems exactly, with an absolute minimum
mathematical effort. In particular, this approach leads
rectly to the full equation of state, in any desired pha
space, together with the cluster properties of aggrega
states. Section III proved that LG mixture models are ex
representations of isodesmic chemical equilibria, at all c
centrations. Thus, the cluster distribution~19! and the phe-
nomenological form~27! are not just ideal approximations
but instead hold everywhere throughout phase space
highly successful interpretation of recent surprising simu
tion data followed from a simple mapping of three-dime
sional discotic amphiphilic solutions to one-dimension
models. The key point here is that such systems are collo
s
e
n

y-

-

he

s,
c
a
to
-

y
of
al
nt
e
lf-
-

-
f
i-
e
ed
ct
-

A
-
-
l
al

in nature, rather than molecular, i.e., a break in a chain
volves the insertion of many solvent molecules. Thus,
mapping is based on imagining solvent to be divided, at a
instant, into solvent disks. This in turn implies that the stic
solvent limit, where the one-dimensional solvent-solvent
tractions outway all other effects, is potentially a comm
physical situation. At fixed total pressure, this latter case
associated with a dramatic increase of the isodesmic equ
rium constant in the limit of low concentration; driven b
what colloidal scientists would recognize as solvent press

This paper also makes use of exact results of o
dimensional LG mixtures to explore the physics that l
behind the well known phenomenology of chemical equil
ria of self-assembly; Secs. V to VIII. Section V shows tha
is possible to give a precise meaning to the chemical po
tial of an aggregate, via potential distribution theory, pr
vided the chosen cluster definition is well defined~no ambi-
guity about which cluster a given molecule belongs to in a
particular configuration!. It is also of interest to note from
Eq. ~27! that m̄n5nmA is an exact consequence of statistic
mechanics, and thatm̄15mA is not just an identity~see Sec.
V! but rather the same statement that the chemical pote
of a solute cannot distinguish the cluster environment that
chose to assign it to for any particular configuration. Sect
VI discussed self-assembly in hard-body systems, show
that amphiphilic behavior can continue to hold even in t
absence of attractive interactions. This somewhat esoteric
ercise highlighted the significance to free volume argume
of choosing to work at constant pressure~the standard choice
in chemical equilibria!, i.e., enthalpy now plays the role tha
entropy would have at fixed volume. The nonuniqueness
the choice of cluster definition was tackled in Sec. VII b
explicitly recalculating the cluster distribution for a partic
lar example of a solvent-exclusion definition. As expect
qualitative changes~such as the appearance of a phase tr
sition! cannot be altered by changing the cluster definitio
but significant quantitative and conceptual consequences
arise in amphiphilic systems. Finally, Sec. VIII discusses
potentially useful mapping of three-dimensional inhomog
neous systems to semi-infinite one-dimensional LG mod
This could only hold when the most favored adsorption
chains is via attachment end on to a surface; as with d
that lie flat on the surface. The LG results imply that t
sticky-solvent regime of this class involves an overwhelm
driving force for chains to attach by one end to a solute w
~or a hard wall!.

In everyone of the above topics, the results obtained fr
the one-dimensional LG models are exact. That is, there
ists an exact physics of isodesmic chemical equilibria. T
physics allows important conceptual conclusions concern
the physical chemistry of self-assembly, as well as yield
quantitative predictions of linear self-assembly phenome
In general, the physical chemists appear to have been
markably successful in developing what is in fact an ex
phenomenology of self-assembly, with the exception that
significance of concentration dependence has not been
appreciated. Thus, the main additional point to add to
physical chemistry of self-assembly is to be beware tha
many amphiphilic systems the physics will be more clos
related to colloidal science than that of typical molecu
solutions.
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APPENDIX A: PRESSURE SUM RULE

The pressure is defined by the Gibbs-Duhem equat
which we can write as

2
]bp

]rw
5rebmA

]~xe2bmA!

]rw
1rebmB

]@~12x!e2bmB#

]rw
,

~A1!

and then use potential distribution theory to eliminate
chemical potentials from the right side

2
]bp

]rw
5rebmA

]

]rw
F S 12r

r D @11aAxwrw

1aC~12xw!rw#2G1rebmB
]

]rw
F S 12r

r D
3@11aB~12xw!rw1aCxwrw#2G

5r
] ln@~12r!/r#

]rw
1
2~12r!rw
12rw

3FaAxw21aB~12xw!212aCxw~12xw!

1@aAxw2aB~12xw!1aC~122xw!#rw
]xw
]rw

G .
~A2!

If one then evaluates the quantity] ln(12rw)/]rw , via re-
peated use of Eq.~15!, beginning with
s

o

r
is-

n,

e

] ln~12rw!

]rw

5

] lnS 12r

r D
]rw

1
]

]rw
ln$rw1@aAxw

21aB~12xw!2

12aCxw~12xw!#rw
2 %, ~A3!

one eventually proves equivalence, i.e., sum rule~16!. To
complete this derivation, note in particular that after rewr
ing

] lnS 12r

r D
]rw

5r

] lnS 12r

r D
]rw

1r

]S 12r

r D
]rw

~A4!

one can eliminater entirely from the final derivative, using
Eq. ~15!.

APPENDIX B: LATTICE-GAS ENERGY

For a one-dimensional binary LG mixture, the total e
ergy per particle (U/N) is, by inspection,

U

N
52x~eArAwA1eCrBwA!

2~12x!~eBrBwB1eCrAwB!, ~B1!

where I have introduced a notation such that a subsc
IwJ denotes a density of typeI next to a wall of typeJ. In
terms of the notation of Sec. III, we haverAwA5Y and
rBwA5(12xwA)rwA , which were evaluated via potentia
distribution theory, i.e., Eqs.~22! and ~23!. The other two
analogous wall densities follow from the same analysis,
applied to measuring the chemical potentials next to a w
of type B; as discussed in Sec. VIII. One can check the
derivations against the symmetry requirementxrBwA
5(12x)rAwB , i.e., the second and last terms of Eq.~B1!,
the cross interaction energies, are equal. Collecting all th
expressions together and inserting into Eq.~B1! yields the
desired result
U

N
52

rw@eA~11aA!xw
21eB~11aB!~12xw!212eC~11aC!xw~12xw!#

11@aAxw
21aB~12xw!212aCxw~12xw!#rw

. ~B2!
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